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It is shown that radar and quantum mechanics may be modeled using the 
Kalman-Bucy state-equation observation approach. A method is given for 
realizing the optimal position filters. 
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1. I N T R O D U C T I O N  

In this paper nonlinear state and observation equations are derived for 
radar and quantum mechanics, and the similarities between the observation 
mechanisms of these two processes are discussed. A method is then given for 
obtaining the optimal estimate of the position of a tracked vehicle in the case 
of  radar, or the opt imal  estimate of  the position of  a particle in the case o f  
quantum mechanics, conditioned on the past history of the vehicle or particle 
as seen through their observation equations. 

The model for radar assumes a known stochastic nonlinear state equa- 
tion for the vehicle being tracked. Optimal estimates of the position and 
velocity of the tracked vehicle are then given using the phase shift, time shift, 
and Doppler shift of the received radar signal. 

While only the observation mechanism of radar is specifically analyzed, 
the model given here applies to any type of electromagnetic radiation bounc- 
ing off a moving body, provided the time shift, phase shift, and Doppler shift 
of the received signal can be determined. 
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An Ito state equation for the tracked vehicle of the form 

5?(t) = f ( t ,  :f(t), x ( t ) )  + A2(t) (1) 

is assumed given, where the state vector x ( t )  = x l ( t ) ,  x2(t) ,  x2(t)  is the posi- 
tion of the vehicle, f describes its a priori dynamics, A is a constant deter- 
mining roughly the deviation of the vehicle from its deterministic path, and 
2(t) is a three-dimensional white noise process (or the time derivative of a 
three-dimensional Brownian motion process) with independent coordinates. 

It is assumed t h a t f i s  such that the Ito process (1) is well defined. 
it will be shown in the next section that the output of the radar receiver(s) 

may be modeled as 

S~(t + O,/c) = h(t - R/c)sin{[co - (Q + R)/c](t  - R/c)} + Aft, (2) 

where S~ is the output of the ith radar receiver (the ith signal), h(t )  sin oJt is 
the signal transmitted by the radar transmitter, and the if, are white noises 
which are independent of 2. Here R is the range between the vehicle and the 
radar transmitter, and Q~ is the distance between the target and the ith radar 
receiver. More than one receiver is allowed so that the phase difference 
between the received signals and the independence of their noises can be 
used as additional information for locating the vehicle. Radars of this type 
are presently being used. 

Equations (1) and (2) are the state and observation equations for the 
radar model presented here. Equation (2) can also model a passive observer 
as shown in the next section. 

Section 3 will show that a model similar to (1) and (2) can be used for 
quantum mechanical observation. Nelson (Ref. 1, Chapter 13) shows that the 
path of a particle moving according to quantum mechanical assumptions 
can be modeled as 

:~(t) = b(t, x ( t ) )  + (h/m)i/22(t) (3) 

where x ( t )  is the position of the particle at time t, m is its mass, h is Planck's 
constant divided by 27r, t,(t) is white noise or the derivative of Brownian 
motion, and b(t, x ( t ) )  is a real deterministic function which can, as will be 
shown in Section 3, be derived from the solution of the appropriate Schr~Sdin- 
ger equation. Thus (3) is a state equation analogous to (1). If  it is assumed 
that the quantum mechanical particle is being observed by some kind of 
electromagnetic radiation, or the particle emits electromagnetic radiation, 
and that the particle behaves in the usual way toward such radiation, then 
(3) and (2) are the state and observation equations for the quantum mechani- 
cal system. 

For the models proposed in Sections 2 and 3, Section 4 shows how to 
obtain the "op t ima l "  estimates of the state x and the velocity ~ (in the case 
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of radar) at time T given the observations S~ in the interval [0, T], where 0 
is the initial time. 

Section 5 describes a way of approximating the optimal estimates 
arbitrarily closely which can be realized in real time in either digital or analog 
form using the present and past of the observed signals S~. 

Kalman (2~ points out that an optimal estimate of x(T) [or 2(T)], con- 
ditioned on the observation of the signals to time T, is the conditional mean 
of x(T) [2(T)] on the past of the signals. So, the conditional mean will be 
used here as the estimator of x and 2. 

To practically realize this type of filter, the conditional means of x and 
2 are first expressed as the ratio of Wiener integrals in Section 4. A real-time 
method of evaluating this type of Wiener integral is given in Section 5. 

Section 6 shows a simplification occurs if the f of (1) is derived via a 
minimum principle. It is shown that the problem of finding the f that mini- 
mizes a certain cost functional may be jointly solved with the problem of 
finding the best estimate of x(T), given the S~(t) for 0 ~< t ~< T. 

The procedure given here for optimally locating a radar-tracked vehicle 
or a quantum mechanical particle appears to have a number of advantages 
over present methods. 

Presently high-performance radar receivers employ a type of filter 
called the matched filter. A matched-filter radar receiver has a bank of linear 
correlators of the form 

F(d, v) = f(d,  v, t)r(t) dt 

where r(t) is the received radar signal a n d f i s  the impulse response of a linear 
filter chosen to maximize the signal-to-noise ratio of the radar receiver. It is 
easy to show that f (d,  v, t) must be chosen so that its Fourier transform is 
of the form 

S0*(eo - f~)exp[-ico(T - to)] 

where S(.)  is the Fourier transform (spectrum) of the original transmitted 
radar pulse, ~o is the carrier frequency of the radar, ~ is the Doppler shift due 
to the relative motion between the radar and the tracked vehicle, ~- is time, 
and to is the delay time for the pulse to go from the radar transmitter to the 
tracked vehicle and back to the radar receiver. See, for example, Vakman 
(Ref. 3, p. 5). 

A differentf(d, v, t) is required for each possible relative velocity between 
the radar and the tracked vehicle, and sometimes also for each relative 
distance between the radar and the tracked vehicle. See Vakman ~3~ and Di- 
Franco and Rubin. (4~ 
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The range and velocity of the tracked vehicle are taken to be the ones 
that maximize F(r, v). Vakman shows that this procedure is optimal over all 
filters which choose the maximum of linear correlators. DiFranco and Rubin 
show that it is optimal from other points of view as well. 

The filter described in this paper is optimal (in the manner described in 
Kalman) over all (linear or nonlinear) functionals T of the form 

d(t), v(t)  = T(t,  S~*(.),.. . ,  Sn*(.)) 

where d(t), v(t) are the estimated distance and velocity at time t, and the 
notation T(t, $1"(-),..., S,*(.))  means that the optimal filter takes into 
account the output of the signals $1,..., Sn of the n radar receivers from the 
remote past up to the present time t. 

The matched-filter radar gives only one reading of range and range 
rate per transmitted pulse. The filter described here gives continuous readings, 
with respect to time, of  the estimated position and velocity. The matched- 
filter approach requires a bank of filters and can give only discrete (with 
respect now to space) readings of range and range rate. The filter described 
here, while probably more complicated than a single linear filter, does not 
require an entire bank of filters. Further, it gives continuous readings with 
respect to both time and space if an analog realization is used. 

If the output of a matched-filter radar is to be Kalman-filtered, then the 
Kalman filter must be added on after the matched filters. For an example of 
practical realization of this type of filter see Ref. 5. The Kalman filtering is 
done in the model presented here as an integral part of  the signal filtering. 

While both types of filters are optimal, they are optimal over different 
classes of  functions as previously described. The filter presented here is 
optimal over a wider class of  functions than the matched filter and so must 
be at least as good as the matched filter. It has not as yet been determined if 
it is better. 

The situation in quantum mechanics is similar. In the present treatment 
of quantum mechanics one is essentially allowed only one reading of position 
and velocity of the observed particle per experiment (see Ref. 6, Section 5.1). 
With the filter described here a continuum of readings would be possible if 
the realization were analog). 

As with the radar case, the two approaches might be of the same 
theoretical accuracy. The filter described here must be at least as accurate as 
the present observation procedure of quantum mechanics. 

Moura et al. 7 have also introduced a model similar to the one given for 
the case of a radar-type passive observer with multiple observation devices. 
They linearize their equations, however, and use Monte Carlo methods and 
not analytical methods as done here. 
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2. THE M O D E L  FOR R A D A R  

I t  is assumed in Section 1 that  the radar  target  has coordinates  xl( t) ,  
x2(t), xa(t) and has dynamics  specified by the stochastic equat ion (1). Fo r  
simplicity, it is assumed that  the radar  t ransmit ter  an tenna  is o f  the single- 
beam,  nonscanning type. More  sophist icated types of  t ransmit t ing antennas  
are considered in Ref. 4 and  the present  analysis can be adapted  to them. 
The  radar  t ransmit ter  is located at  ul ,  u2, u3, and the (possibly) different 
r adar  receivers are located at vl ~, v2 ~, vaL See Fig. 1. 

The  distance between the target  and the radar  t ransmit ter  at t ime t is 
called R(t)  and is {[xl(t) - ul] 2 + [x2(t) - u2] 2 + [x3(t) - ua]2} 1/2. 

The  distance between the target  and the ith receiver at t ime t is called 
Q,(t) and is {[vii(t) - xl( t ) ]  2 + [v2i(t) - xz(t)] 2 + [v3*(t) - x3(t)]2} 112. 

'The local t ime t at the target  will be used as reference t ime because this 
approach  seems easiest, c is the p ropaga t ion  velocity. I f  t* is the t ime it takes 
for  the t ransmit ted  pulse to go f rom the t ransmit ter  to the target,  then it 
follows tha t  R(t )  = et* and therefore tha t  t* = R(t)/c.  

The signal that  bounces  off the target  at  t ime t is, therefore,  just  before 
reaching the target,  the signal that  was t ransmit ted  at t ime t - t*. 

I t  is assumed that  the t ransmi t ted  radar  pulse at t ime t - t* is o f  the 

first radar receiver x ~ . ~  
ql(t)_ \ path of 

target 

vi 3 "\ L itbrag2r / "  \ x t), x (t) 
receiver s ~  \ 

R(t) 

~ Ul, u2, u 3 
radar transmitter 

Fig. 1 
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form h(t  - t*)  sin co(t - t*), where sin oJt is the carrier of the radar and 
h(.) is its modulation. 

Thus the signal that reaches the target at time t is 

h(t  - t * ) s i n  oJ(t - t*) = h[t - R( t ) /c]  sin ~o[t - R(t) /c]  

and the signal that bounces off the target is 

h[t - R( t ) /c]  sin{[~o - R(t ) /c][ t  - R(t) /c]}  

where the Doppler effect caused a shift in the carrier frequency of amount 
- [ ~ ( t ) / c .  We suppose h(-) to be such that the Doppler effect does not 
significantly change it. 

The signal reaches the ith receiver at time t + Qi( t ) /e  later, Q~(t)/c 
being the time it takes for the signal to travel from the target to the ith 
receiver. Due to the relative motion between the target and the receiver, the 
signal is frequency-shifted again. Thus if Si is the signal at the ith radar 
receiver, S~ at time t + Q~(t)/c is 

where, as in Section 1, ~ is white noise. This is the desired equation for the 
signal at the ith radar receiver. 

Section 4 shows how to optimally estimate xl ,  x2, xa, 21, 22, 23 given 
the signals St. 

The model here can be changed to cover the case of a passive system as 
in Ref. 7, by setting h( t )  - 1 and by assuming that the target generates a 
monochromatic signal of known frequency. 

3. T H E  M O D E L  FOR Q U A N T U M  M E C H A N I C S  

Nelson (Ref. 1, Chapter 15) shows that the dynamics of a particle of 
mass m, moving in a potential field V under quantum mechanical assump- 
tions and in one dimension (he also considers the three-dimensional case), 
can be represented as the solution to a real Ito equation of the form 

Yc(t) = b(t,  x ( t ) )  + (h/m)l /22(t)  (5) 

b(t, x )  is determined as follows. The SchrSdinger equation for this particular 
case is 

(h/t)~b t = -(h2/2m)~bxx + V~b (6) 
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Nelson shows that 2 

where 

~b = exp[R + Si] (7) 

Rx = m(b - b,)/2h and Sx = m(b + b,)/2h (8) 

b is a forward velocity as in (5) and b,  is the backward velocity corresponding 
to b. Since this theory is quite involved, it is not given here. The reader is 
referred to Ref. 1 for a good exposition of it and the meaning of b, b , ,  
forward velocity, and backward velocity. 

It is not difficult, however, to derive b from the solution of the Schr6din- 
ger equation. On physical grounds and on mathematical grounds ~8-1~ we 
know for a given particle and potential V that there is a solution ~b to the 
Schr6dinger equation (6). By taking the logarithm of ~b, we can determine 
the R and S of (7). Differentiating R and S with respect to x, we have from 
(8) two equations for the unknowns b and b ,  which can be solved for b. 

The state equation (5) for quantum mechanics is different from the 
state equation (1) for radar in that (5) is of first order while (1) is of second 
order. Equations (1) and (5) in fact describe different physical situations, Since 
x(t) in both processes represents position, 2 in both cases represents velocity. 
2 in (5) for fixed x is the sum of a deterministic component, b(t, x), and a 
white noise component (h/m)l/22. Since 2 is violently changing, so is 2. The 
violent changes of 2 can be thought of as being caused by collisions of the 
particle (as in Brownian motion) with other particles. These collisions cause 
jump changes in the velocity 2 while still having the position x(t) contin- 
uous in time. 

It is not stated here that quantum mechanical effects are caused by 
collisions of the particle with other particles, only that the distribution of the 
paths of a quantum mechanical particle has the same distribution as the 
solutions of  (5). Therefore the Ito equation (5) represents the distribution of 
the position of  a quantum mechanical particle. 

The model (1) has the jump changes in 5/, i.e., in the acceleration or in 
the force acting on x. Model (5) could be also used for radar if the tracked 
vehicle were experiencing large, violent changes in velocity. 

The mathematics for analyzing the two models is about the same. It is 
possible to estimate both x and 2 for (1), but only x for (5) since 2 is bouncing 
back and forth between plus and minus infinity according to the assumption 
that 2 is white noise. The expected value of 2 given x in (5) is b(t, x) since 
E{2} = 0. See Doob (11~ for more on white noise. 

The measurement process (4) [or (2)] is not generally used to model 

2 The S and V of this section have no relation to the S and v of the other sections. 
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quantum mechanical observation. However, there are bodies, signal genera- 
tors (transmitters) and receivers, such that one is interested in analyzing the 
quantum mechanical effects on the motion of the bodies, such that the 
bodies can be illuminated by electromagnetic radiation from the signal 
generator and there are receivers that can measure the phase, time, and 
Doppler shift as required by (4). There are also bodies that generate their 
own electromagnetic radiation, which can be analyzed by a passive phase 
shift, time shift, and Doppler shift of  the type (4). 

Thus, while not all quantum mechanical observation models can be put 
in the form (5), (4), at least some can be. 

The potential V of the SchrSdinger equation (6) can be thought of  as the 
effect of the measurement apparatus on the motion of the body. Or V can 
be thought of as consisting of two terms, one of which models the measure- 
ment effect and the other of which does not (that is, it comes from the state 
equation itself). 

The noise term A~ of (4) for radar models the receiver noise. The "no ise"  
in quantum mechanical measurement is generally thought to come from more 
fundamental processes than the noise in the measurement apparatus. For 
quantum mechanics, therefore, the A#~(t) term of (4) will consist not only of  
measurement apparatus noise, but also of noise from more fundamental 
causes such as the effect of the nonzero wavelength of light. 

Vakman ~a~ analyzes quantum mechanics and radar side by side and 
gives a more complete analogy between the noise in quantum mechanics and 
the noise in radar. 

Noise of the form A~ does seem to be of a good form for quantum 
mechanics. It consists of independent spikes of zero width (in time) and of 
infinite height. It seems that any process which is less erratic or more corre- 
lated should be accounted for in the model and therefore not be called 
noise. 

The noise term (h/m)ll2~ of the state equation (5) is the term that accounts 
for the inherent randomness of quantum mechanics. This term is not measure- 
ment-related and is there irrespective of whether the measurements are taken 
or not. 

4. R E P R E S E N T A T I O N  OF THE N O N L I N E A R  FILTERS 

A representation of the optimal nonlinear estimate of x (or 2) in the 
present given S~ in the present and past will now be derived using Wiener 
integrals for both quantum mechanics and radar. 

Let y( t )  = yl( t ) ,  y2(t), ya(t) be defined by 

y~(t) = ]q(t), y2(t) = 22(t), ya(t) = 2a(t) (9) 
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for the x(t) of (1). It follows that 

~o ~ fo ~ xl(r) = yl(t) dt + xl(O), x2(T) = y2(t) dt + x2(O) 

f; x~(r) = y~(O dt + x~(O) 

and 

x l (0  = ~i(t), x2(O = ~2(t), x~(t) = 3>~(t) 

Equation (1) goes over into 

~9(T) =f(T,y(T),f:y(t)dt+ x(0)) + h2(T) (10) 

using vector notation. This Ito equation is of the same general form as (5) 

except that it has the extra variable f f  y(t) dt + x(0). See Ref. 12, p. 479 

and Ref. 13 for more on this type of transformation. It follows that the 
optimal filters for radar and quantum mechanics can be developed with the 
same mathematics. Let 

g~(t,Y,(t),x(t))= h ( t -  - ~ )  sin[(oJ /~(t) + c Q~(t)) (t - R(t)[c)] ( l l )  

From (4) it follows that the observation equation may be written as 

S~(t + Q~(t)/c) = g~(t, yc(t), x(t)) + Mv~ (12) 

It may be shown (Ref. 12, p. 498) that the conditional mean of x(T) 
given S~(t + Q~(t)/e) with a priori initial density p(:~(0), x(0)) for :~ and :~ 
may be written as 

I ~ L ~ ~ ~'~ ~+ ~,0~] o~{ ~1,~)j; (,~+ ~ )  ~ 

if: ;; + (1/A~) f d y ( O  + ~,g,S~(t + Q~(t)/~)dt 
i 

; 1) ) ' ~ S~(t + Q~(t)/c) dt y(O) = 2o p(2o, Xo) d2o dxo (13) 2 

divided by 

If: ~; + (1/), 2) fdy( t)  + ~ g~S(t + Q~(t)/c)dt 

- ~ �89 + Q~(t)/c) y(O) = eo p(.~o, xo) d~o dxo 
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In the above the arguments o f f  are t, y(t), and fo r y(t) dt + x(O) as in 

(10). The arguments o f g  are first expressed in terms of R, Q, R, and 0 as in 
(11). These then are expressed in terms of the range and range rate equations 
of Section 2. Then the x's in these expressions are transformed into y's via 
Eqs. (9). 

The notation EaW{ . - - y  [y (0)=  20} means expectation with respect to 
Wiener measure over the paths y with variance a 2 with the initial value of the 
paths over which the integration is taken conditioned to be 20. 

For an exposition of Wiener measure see Kac. (.4~ 
Proof that expression (13) does in fact represent the conditional mean 

of x, given S, is shown in various forms and under various hypotheses by 
Schilder (Ref. 12, p. 498), Mortensen, (15~ Bucy and Josephs, (1G) Zakai (17) 
and Girsanov. (la~ 

Equatioll (13) as written gives the conditional mean of x(T). The con- 
ditional mean (optimal estimate) of 2(T) can be obtained by substituting 

y(T) for fo r y(t)dt + Xo in (13) because of Eqs. (9). 

Equation (13) is for radar. For quantum mechanics (5) is used as the 
state equation and the conditional mean of the state (position of the particle) 
can be given without using transformations (9) as 

E}W{x(T) exp{_(l/a2) f[ (b2 + ~g2) dt 

[/o fo X + (1/h 2) b dx(t) + g~S(t + Q~(t)/c) 

(14) 

divided by 

E aW(exp(_(1/2)=) f f  @2+ ~ g2)d t+ (1/h=)[s dx(t) 

+ ~ g,S(t + Q,(t)/e)dt 

where for notational convenience A has been substituted for @/rn) .1= and 
where the initial distribution p(xo) is determined in the usual quantum 
mechanical way. 

While the Wiener integrals of (14) are path integrals and do represent 
a quantum mechanical quantity (the conditional mean), they are not the 
usual Feynman path integrals. Among other things, they are real and they 
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represent the conditional mean. The Feynman path integrals are usually 
used to represent the quantum mechanical density. 

The conditional density function of a quantum mechanical particle, 
i.e., the function that gives the probability of finding the particle at any 
particular place under the assumptions of this paper, can be expressed as the 
ratio of two real path integrals using the formulas of Mortensen, Bucy, or 
Zakai as previously listed. If no observations are taken (g as defined above is 
zero), then their expressions for the density should be the same as would be 
obtained by the Feynman path integral method. 

Actually, models (1) and (4) for radar and (5) and (4) for quantum mechan- 
ics are not exactly the models for which representations (13) and (14) 
have been shown to be true. This is due to the " fu tu re"  term Q(t)/c in 
S(t + Q(t)/c) of (4). While this term pushes S into the future, it is actually 
only a present term since Q(t)/c involves x only in the present. Thus the proofs 
of (13) and (14) are easily modified to fit this case. 

Because of this term, S is actually observed after the motions of the 
state equations (1) or (5). This of course fits the physical situation. 

The Q(t)/c term could be taken out of the S of (4), if there were only one 
receiver, by a change of  time variables of the form t** = t + Q(t)/c, which 
would put the observations in the present and the dynamics [(1) and (5)] in 
the past. Representations (13) and (14) could then be rigorously derived for 
t** time. The noises d~ and 2 would not be affected by this time transforma- 
tion since noise by definition (see McKean C19~) is translation invariant. 

However, this approach would involve time translations through Ito 
differentials, which involves a great risk of mistake (since nonlinear equations 
are involved) and probably subjective interpretations on the order of the 
various limits. 

Thus the approach of this paper is to keep vehicle, particle time as 
present and derive all results with respect to this reference. 

As will be shown in the next section and as seen from expressions (13) 
and (14), it is possible to derive optimal estimates for the conditional mean 
of  x or 2 in the present given S in the future, present, and past. Therefore no 
theoretical difficulties are involved if it is assumed that a reading of S is 
taken over all time and then if one goes back and computes the optimal value 
of x at a particular time T. 

No practical difficulties are involved either with this approach due to the 
large size of r in relation to the other constants. While S may be required 
into the future, it is not required very far into the future. (See Section 5.) 
Once a practical filter has been devised, one takes observed time as present 
and the dynamics time as past. 

While unfortunately expressions (13) and (14), which express the best 
estimate of  the state x given the observed signals, are quite complicated, it 
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should be remembered that they are the exact best estimates of the state, 
given the observations. The only approximation made so far is that the 
Doppler effect only affects the carrier of the transmitted signal h(.) sin co(.). 
It is also shown that quantum mechanical observation can be modeled with 
entirely classical principles. 

5. REALIZATION OF THE O P T I M A L  FILTERS 

This section describes a numerical method for approximating the path 
integral expressions (13) and (14). Other numerical methods for realizing 
nonlinear filters are given in Ref. 20. 

The present method is a variant of the perturbation expansion of quan- 
tum mechanics which is explained in detail in Ref. 6, Chapter 6. This method 
was used to realize an optimal FM filter in Ref. 21. 

The perturbation expansion has a number of desirable features. As will 
be shown, it can be realized in real time. This is particularly important for 
radar. It can be realized in either digital or analog form, a factor which 
might be of  value in reducing the size, weight, and cost of some radar sets. 
The absolute error committed by any approximate realization can be bounded. 
Each term of the expansion to be given has physical significance in either 
the radar or quantum mechanical applications (see Ref. 6, Chapter 6). 

The filter is also most accurate in low-signal-to-noise ratio cases--the 
area where best performance is desired. 

The expansion will be carried out only on the numerator of (13) since 

the denominator of (13) is the same as the numerator with the (r o y(t) dt + xo 
term set equal to one. Equation (14) is a special case of (13) since b's of (14) 
have one less variable than the f ' s  of (13), as pointed out previously. 

For  simplicity, the expansion will be carried out for vehicles moving in 
only one dimension and for one receiver. Expansion in higher dimensions 
requires no concepts that are not used in the one-dimensional case and the 
extra notation tends to obscure the meaning of the operations. 

A further specialization of the processes considered is that their initial 
position and velocity are normally distributed with means if, Yo, variances 
~p2 ev2, and covariance p, and also that the initial values are independent of 
the perturbing Brownian motion. 

The reason for this is mostly that if definite assumptions are made about 
the initial values of the processes, the expansion can be carried out further. 
Also, the normal case is the easiest to work with and the case usually used in 
practice. Since the initial density function p of (13) and (14) has been special- 
ized to the normal density described above, the notation 

~'~ i ~' Eua~{ -- .  Jy(O) = 2o}p(Xo, 20)dxo d2o 
J . _  or} J . -  oo 
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meaning expectat ion with respect  to Wiener  measure  with initial distr ibution 
given by p, will be replaced by the simpler and more  usual nota t ion 

Aw Ey {..-) 
meaning the same as above.  

A l e m m a  is now needed. 

L e m m a  5.1. a I f  y ( t )  is Brownian mot ion  with var iance Z 2 and with 
y(0) = 2o, and xo, 20 are normal ly  distr ibuted with means  xo, Yo and vari-  

ances ~re 2, av 2 and  covariance p, then f ~ y ( a ) d a  + xo, y( t ) ,  and xo are 

normal ly  distr ibuted with means  t2o + Y~o, ~o, and )7o, and with variances 
A2ta/3 + (tar) 2 + tp + crp 2, th 2 + cry2, and ~p2. The covariance between 

fo t y(~) de* and  y ( t )  is (At)2/2 + tar 2 + p. The covariance between y( t )  and  

Xo is p. The  covar iance between ft o y(~) de* + x0 and Xo is to + ep2. 

Proof. y ( t )  can be writ ten y( t )  = y ( t )  - y(O) + y(O) = y( t )  - y(O) + 20. 
By definition y( t )  - y(O) (this is Brownian mot ion  with initial value zero) 
has mean  zero and variance t)t 2. By assumpt ion  20 is no rmal  with mean  Yo 
and variance ~v 2. Thus  y( t )  is no rma l  with mean  Yo and variance th 2 + ~v 2. 

Now,  for y(~) de* + xo is no rmal  since it is the limit o f  sums o f  normal  vari- 

ables. Since Wiener  measure  is the measure  associated with Brownian motion,  

it follows that  the mean  of  f~ y(e*) de* + xo is 

l J o  y(a)  de* + Xo ~ ].Jo [Y(C0 - y(0)l de* + tko + Xo 

f; = E~W{[y(e*) - y(O)]} dc~ + tYo + So 

= t)~o + )7o 

and the var iance o f  f~ Y(e*) dc~ + xo is 

Ev a~~ y(c 0 de, + xo - tYo - Xo 

([fo l = Ev aw ' (y(e*) - y(0)) de* + t(y(O) - ~o) + (Xo - s 

Since the Brownian mot ion  is independent  o f  the initial distr ibution,  this 
can be wri t ten as 

u i L j  ~ ( y ( e * )  - yCo)de* + t%rv 2 + t o + ere ~" 

= ~ "~~ (y(e*~) - 20)da~ (y(e*~) - 20)de*~ + t ~  ~ + to + ~# 
" IJo  

= E~ { ( y ( z )  -- ~o)(y(a2) -- 5:o)) d~z d~2 + t2av 2 + tp + ~ 2  

a See Ref. 11, p. 651, for background on Brownian motion. 
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Since min(~,  c~2) (the minimum of ~1 and ~2) is the covariance function of 
Brownian motion, this last expression is 

h 2 min(,zl, a 2 ) d ~  da2 + ~v2t 2 + to + ~p2 

= h 2 min(a~, a2) d~  + min(~,  ~2) d ~  dc~ 2 
'JO 2 

+ t 2 r  2 + tp + ae 2 

fo' ] = A 2 al dax + a2 dal da~ + f fv2t 2 + pt + (re 2 
"tO 2 

-t  

= ~,~| [ , ~ / 2  + . ~ ( t  - ,~)1 d ~  + t ~  ~ + tp + , ~  
l 

* '0  

= h2ta/3 + t2av 2 + tp + av 2 

In the same way the covariance of ]~ y(a) d~ + Xo and y ( t )  is 

{If; ] } E~ '~ y(~)  d~ + Xo - t.~o - .,Zo [y ( t )  - .~o] 

{[fo ] = E~  ~ ( y ( ~ )  - y(O))  J~ + ~(y(O) - ~o) + (Xo - ~o) 

• [(y(t) - y(O)) + (y(O) - Yo)]} 

= E a~-~(t- (y(a) - y(O))(y(t) - y(O))da~- + tar 2 + p 
~Jo 

= h 2.11 ~ min(% t) d~ + tar ~ + p 

= A 2 a d~ + t~v 2 

The covariances between Xo and f: y(a)d~ + xo and y ( t )  are calculated in 

the same manner. 
Now let I be 

1{ I =  E ~ f [  f r y ( t )  dt + xo exp ( -1 /2a  e) ( f 2  + g2) dt 
t .LJo 

[;o fo ])) + (I/h 2) f d y ( t )  + gS( t  + Q ( t ) / c ) d t  -1/2 S2(t  + Q( t ) / c )d t  

Thus I is the numerator of (13) and the path integral to be evaluated. 
Note that this path integral has neither end point of the paths fixed, while 
the path integrals of (6) have both end points of the paths fixed. 
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The procedure for evaluating I is to expand the exp term in a power 
series and calculate the series term by term. I becomes 

f([f/ ]( J/ I = x~(1/n!)E~W y(t) d t +  xo (-1/2/V) (f2 + g2) d t 
n 

l// f/ ];)) + (1/h ~) f dy ( t )  + gS(t + Q(t)/c)dt -1/2 S2(t + Q(t)/c)dt 
"JO 

The interchange of the sum and integral here and in other places can 
be rigorously justified as in Kac. (22) 

The zeroth term of  I is 

E~W{fo~Y(t) d t +  x 0 } =  T 2 0 +  20 

by Lemma 5.1. 
We now Consider the following part of  the first term, 

J = E~ ~ Xo ( -  1/22, 2) (f2 + g2) dt 

+ ( l /a2)[ f f  f +( t )  + f ~  gS(t  + Q(t)/c)dt]]} 
The expected value of the Ito integral ] [ f d y ( t )  is zero, by Dynkin (Ref. 23, 

p. 211), since dy is independent of Xo. 
The functions g and Q of the path integral part of J will now be special- 

ized according to their previous definitions. J will then be expressed as a 
finite-dimensional integral which can be numerically evaluated. According to 
(11), g is 

g(t, 2(0,  x(t)) = h(t - R(t)/c)sin{[~o - (/~ + Q)/cl[t - R(t)/c]} 

where R, the distance between the radar transmitter and the target, is, for 
one-dimensional motion (Section 2), 4 R(t) = Ix(t) - u t and where Q, the 
distance between the target and the radar receiver, in one dimension is 
Q = Ix(t) - v[. 

Under transformation (9), R and Q go over into 

R ( t ) =  If]y( )d  + X o - . ,  Q ( t ) =  ]foty(~)d~ + xo - v t (15) 

4 While absolute values do not appear in two or more dimensions, their treatment is still 
instructive. 
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Differentiating (15) with respect  to t, we get 

R(t) = + y(t) and Q(t)  = + y(t) (16) 

where the plus sign is used for  R if f~ y(a) da + xo - u > 0, and the minus 

sign is used for  k if f~ y(a) d~ + xo - u < 0. The same applies to Q. Putt ing 

these expressions into J, we get 

j ( ~ , - ~ w (  - 1  t 
= . o  z~ b lXo- f~{[ f ( t , y ( t ) ,  fo y(a)da + xo)] 2 

1 (  IS;y(=)a  + xo - .Ij + - ~ h  t -  
C 

• S ( t +  If: y(~) da+XO-e v t ) }  dt 

For  fixed t now the r a n d o m  variables f~ y(e 0 da + Xo, y(t), and Xo become 

ordinary  one-dimensional  r a n d o m  variables whose distr ibution is given by 

L e m m a  5.1. Lett ing f~ y(a) d~ + xo = a and y(t) = b, and using the result  

in Ref. 24 (since the result there is for  zero means,  the nonzero  means  must  
be added  in as done here), the funct ion space integral J reduces to the 
following fourfold  integral:  

J = - [(2zr) 3 det M1 - 1/e Xo 
- - c o  o0 - - o o  

2 + ~  h t -  c 

• +b + b)( 

lh(t-la-c U])sin[(oJ +b + b)( la - S ( t  + [a - 

x exp{- �89  - tYo - 2o), (b - Yo), (Xo - 20)] 

x M - l [ ( ( a  -- tYo - 20), (b - Yo), (Xo - ~o))]} da db dxo dt 
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M is the covariance matrix calculated in L e m m a  5.1 : 

M = [ h2ta/3 + (t~v)2 + to + ep2 (ht)2/2 + tev 2 + p tp + 
(M)2/2 + t~v 2 + p th 2 + ~v ~ p 1 tp + cr~ 2 p ~e 2 

There are four possibilities for the terms with the absolute value signs 
[these four  possibilities also determine the signs in (16)]: 

I .  a m 

II. a -  
I I I .  a - 
IV. a -  

u > 0 a n d a -  v > 0 
u < 0 a n d a - v >  0 
u > 0 a n d a -  v < 0 
u < 0 a n d a -  v < 0 

which go over into 

I. a > u a n d a >  v 
II. a < u a n d a  > v 

I lL  a >  u a n d a  < v 
IV. a < u a n d a  < v 

Thus if  v < u (u and v being the one-dimensional positions o f  the radar  
transmitter  and receiver; see Fig. 1) we have three regions o f  a integration, 

a > u, or  v < a < u, or a < v 

The a integration (where a is the posit ion o f  the target) is done separately on 
each o f  these regions. 

The + signs in the last expression can be removed and also the absolute 
value signs. J is then ready for evaluation or numerical integration. 

Whether  or  not  the terms of  I not  containing the received signal S can 
be integrated in closed form [f2 and (h sin) 2 in this case] depends on the 
form o f f  and h. I f f  and h are o f  a fairly simple form, such as polynomials,  
some tr igonometr ic  functions, exponentials, or step functions, direct evalua- 
t ion is possible, as shown in Lemma 5.2, due to the Gauss]an density func- 
tion. I f  not,  then some sort o f  numerical  approximat ion  can be used, as will 
be shown. 

Due to the unknown nature o f  the received signal S, terms containing 
S cannot  be completely integrated in closed form. It  can be seen that  the 
series in the signal terms is exactly the same as the series considered by 
Wiener, (25~ McKean,  (26~ and King (2~ except that  here S is the received signal 
and not  white noise. 

A lemma is now given which shows how to evaluate the linear filters 
appearing in J. 
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Lemma 5.2. 

[(2zr) 3 det M ] - : / z  Xo sin(bE + F) 
~--:xD co 

x exp[-�89 - tYo - 2o), (b - Yo), (xo - f0)) 
x M - : ( ( a  - tYo - fro), (b - Yo), (xo - 2o))] db dxo  

= ( 2 7 r M l : ) - : ~ 2 { [ M : 3 ( a  - tYo - 2 o ) / M ~ :  + fro] 
x sin[(a - tYo - 2 o ) M 1 2 E / M : l  + F + Y o E ]  

+ [ ( M . M 3 2  - M I 2 M ~ : ) E / M . ]  

• cos[(a - tf:o - 2 o ) M : 2 E / M ~ :  + F + YoE]} 
x e x p [ - ( a  - tYo - Y:o)2 /2Mz:  - E 2 ( M : : M 2 2  - M ~ 2 ) / 2 M a : ]  

where M u and M denote the covariance matrix calculated in Lemma 5.1 
and E and F are constants.  

P r o o f .  The proof  is done by brute force. The inverse matrix is given a 
name and all the factors in the exponent are explicitly written out. The sin 
term is written as the imaginary part  of  e x p [ i ( b E  + F)]. All terms in 
the exponent are now of  at most second order. The operation o f  taking the 
imaginary part  is taken outside the integral signs, the square on b in the 
exponent is completed, and then b is integrated out. The square is then 
completed on xo and Xo is integrated out. The imaginary part o f  the result is 
given in the conclusion of  the lemma. 

J is now separated into six different parts. First J is separated into the 
three regions o f  a integration, a > u; v < a < u; and a < v. The absolute 
value signs are removed and the _+ signs fixed. Then each of  the three inte- 
grals is split into two in tegra ls - -a  signal part  (containing S), and a nonsignal 
part.  

Since evaluation o f  the nonsignal integrals is similar to the evaluation 
o f  the signal part  integrals and since further evaluation o f  these integrals 
requires specialization of  the f and h functions, they will not  be further 
considered. 

The region v < a < u is considered first for the signal part  o f  J. Thus 
for this case [a - ul = - ( a  - u), ]a - v] = a - v, and the Doppler  term 
( +  b + b) cancels out by the reasoning behind Lemma 5.2 or by the physical 
reason that for this case the target is between the transmitter  and the receiver. 
Thus this part  o f  the J integral is 

2 i T ~ ~co ( u  

• S ( t  + (a  - v ) / c )  exp[ - �89  - tYo -- 2o), (b - Yo), (Xo - Xo)) 

• M - : ( ( a  - tYo - 20), (b - ~o), (Xo - Xo))] d a  db  dxo  d t  
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which by Lemma 5.2 {with E = 0 and F = co[t + (a - u)/c]} is 

A -2 ( 2 w M l l ) - l / 2 [ M l a ( a  - t2o - ~ o ) / M ~  + s + (a - u ) /c )  
,d o ,/ ~; 

x sin{co[t + (a - u)/c]} S ( t  + (a - v ) /c )  

x e x p [ - ( a  - tYo - ~o)2/2M1~] da dt  (17) 

which is of the general form 

o D(a ,  t ) S ( t  + (a - v ) /c )  da dt  

This shows that (17) can be considered to be a linear filter on S. Evalua- 
tion in real time is possible since the different components of D in multi- 
dimensional target spaces can be integrated independently (this would not be 
the case for multidimensional observation spaces) and also since D decays 
quickly due to the exponential. 

If time is measured in seconds and distance in miles, then c is 186,000 
and the maximum of u - v is on the order of 100 and therefore the (a - v) /c  

type terms in (17) have a maximum of about 1/1860. Thus another way of 
approximating (17) is to make a Taylor series expansion about (a - v) /c  = O. 

Since (a - v ) /c  is so small, one might propose to leave it out entirely. 
If this criterion is applied equally to all terms of J, however, J would not 
depend on u and v, the positions of the transmitter and receiver, and this 
would lead to a meaningless result. The slight dependence of the estimated 
state on the u and v variables is not a weakness of the present analysis; it is 
inherent in determining the position of a body by measuring the time, phase, 
and Doppler shift of the electromagnetic waves it reflects. 

Therefore, a Taylor series expansion of (17) must go out to at least the first 
term. A second seems unnecessary since it would be of order 1/3,000,000. 

If this Taylor series is made, then the a integration of (17) can be easily 
carried out. A difficulty arises, however, because the signal S must also be 
differentiated and according to (4), S is the sum of a drift component and 
a white noise component A~. White noise is the derivative of Brownian 
motion, which, according to a number of criteria, does not exist (see Ref. 11). 
Therefore the observation model (4) must be changed to allow for the differ- 
entiation of S. 

The extra hypothesis is now added that while the signal as it reaches the 
antenna is described by (4), when it is ready for processing by the present 
filter the signal has been preprocessed by the radar receiver so that S and its 
derivative exist. This appears to be a reasonable hypothesis since this type of 
preprocessing must go on in any practical receiver. This hypothesis is equiv- 
alent to the assumption that the receiver does not pass signals of arbitrarily 
high frequency. 
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I f  this hypothesis is made, then all terms O f I (defined after Lemma 5.1) 
can be integrated. The derivative of  S always appears as being integrated 
next to another  function, and therefore integration by parts is always possible, 
so that  the filters need depend only on S and not  on the derivative o f  S. 

The filter given in this paper has the advantage of  being recursive, i.e., 
as new signals come in they can be processed starting from the present- - i t  is 
not  necessary to reprocess all the old signals. 

The term (17) depends on S in the future o f  T. However,  it does not  
depend on S very far into the future. F rom previous considerations and (17) 
it follows that (17) depends on S at most  1/1860 sec into the future. 

The term just covered was for v < a < u. We now consider the case 
a > u, which corresponds to the transmitter situated between the target 
and the receiver. 

As was done with the first term, let a denote ( random) target position 
and b denote ( random) target velocity. Using Lemma 5.1, the signal par t  
o f  this term of  J becomes 

~-2 [(2rr) a det M]-~12xoh(t - (a - u)/c) 
CJO 

x sin[(w - 2b/c)(t  - (a - u)/c)] S( t  + (a - v)/c) 

x exp{- �89 - tYo - Xo), (b - Yo), (Xo - xo)] 

x M-~[ (a  - tYo - )2o), (b - Yo), (Xo - )2o)]} d a d b  dxo dt 

{with E = ( - 2 / c ) [ t  - (a - u)/c] and which by Lemma 5.2 
co[t - (a - u)/c]} is 

/~-2(2rrMll) -1/2 h t a - u a - v - 0 u c S t +  M l a a  t Y o - 2 o  c + x0 

• s i n [ - 2 ( a - t 2 o - ~ o ) M 1 2 ( t  (a-u)/C]_c_M~ ! 

a - u) t - (a - 

+ c c 

, ,a . , , c )  
+ - 2  --c 

x cos ~-.1- - 2 M 1 2  c 

( a -  u)  t - ( a - -  u ) / c ] }  
+ oo t -- 220 

c c 

x exp [ ( a -  2Mlzt)~~ -- 2~ - 4 (  t r - st) 2 MllM22 - C  ~ 1  

F = 

M~] da dt 
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The last signal term of J (a < v) is, using Lemma 5.2 with E = 
(2/c)[t + (a - u)]/c and g = co[t + (a - u)/c], 

+ Xo] 

x sinl2(a - t2o -- 2o)M12 t + cM11(a -- u)/c 

( t + ~o t + + 2Yo - 
c c 

M11M32 - M12M31 ( t + (a - u)/c) 
+ -M--l; 2 c 

x cos[2(a - tyro - 2o)M12 t + (ac- u)/c 

+~~ t + a - u ) c  + 2 y ~  

x e x p [ - ( a - t Y ~ 1 7 6  - 4 t + c C~M~ 

These expressions for the linear filters on S are not as complicated as 
they might seem, since they involve a to at most a second-order term in the 
exponent and a to at most a linear term outside the exponent. Dependence 
on t (the other variable of integration) is more complicated since the co- 
variance terms M~j depend on it, but the dependence on t is still only in 
terms of relatively simple rational functions. 

The two terms above involve S into the distant future. On the assump- 
tion that h and the signal are bounded, however, which they will always be 
in a practical system, both the above terms can be truncated after a (small) 
finite time if the inequality on the tails of a normal distribution given by 
Feller [Ref. 28, Eq. (VII 1.8)] is used. 

This completes the analysis of J. 
Another part of the first term of I is 

E a w f [ ( r  Y L[Jo ] [  1/2)~2) f0 r y(t) dtjL(_ (f2 + g2) d t 

+ (1/a~)[fffdy(t)+ ffgs(t+ Q/e) d t]]}  

The order of integration is changed to 

f~o forE~O{y(h)[(_ 1/2,V)(f2 + g2) + (1/~2)gS(t2 + Q(t2)/o)]} dtl dt2 

+ (1/A 2) f ~  Eu~W{y(tl)f~f dy(t2)} dtl 
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The joint distribution (the covariance matrix) of the normal variables 

y(tl), y(t2) and fto~ y(~) d~ + Xo is now calculated and the above function space 

integral reduces to an ordinary fourfold integral as J did. The Ito integral 
does not drop out as in the previous case since evidently y(tl) and dy(t2) are 

not independent. This term is calculated by letting y(tz) = f~l dy(~) and using 

Eq. (7.6) in Dynkin (23~ (see also Wiener, (25~ first part  of lecture 2; and 
Schilder, Ref. 12, Lemma 2.2). 

Calculation of the higher order terms proceeds in a similar manner. 
The estimates necessary to prove convergence of the I series in Kac ~22~ 

indicate that more and more terms are required as time increases. However, 
examples (21~ indicate the reverse, an exponentially fast decay into a steady 
state whose analogs in the linear case are the stationary processes first studied 
by WienerJ ~9~ 

The criteria for determining whether the series given here converges 
with a few terms independently of  time or blows up with increasing time is 
probably whether the x process (1) itself is stable or not (see Kushner ~3~ 
for a definition of stochastic stability). Inclusion of boundary conditions 
(Schilder(21,31~; Dynkin, (23~ p. 115, Vol. II) keeps the process from going to 
infinity. 

The received signal for the present case is g(t, ~(t), x(t)) + Ar~ [see (10)]. 
This can be written in the more general form as Ag(t,.f(t), x(t)) + Aft,, 
where A is a measure of the signal power and A is a measure of  the noise 
power, and therefore A/h 2 is proportional  to the signal-to-noise ratio for the 
present system. I f  g is replaced wherever it appears in the series I by Ag, it 
can be seen that part of  the series for the conditional mean is a power series 
in the signal-to-noise ratio A/,~ 2. Thus the filter presented here can be viewed 
as a power series expansion in the signal-to-noise ratio having the greatest 
accuracy and requiring the least number of  terms in the case when the signal- 
to-noise ratio is small. 

Just as power series in complex variables can be rearranged to have 
different circles on convergence, so can the series given here in the signal-to- 
noise ratio. It  is possible to rearrange it in such a manner that the fourth 
term of I (for example) will depend only on the fourth power of  the signal- 
to-noise ratio. 

6. A S T O C H A S T I C  H A M I L T O N ' S  PR INCIPLE  

I f  it can be assumed that the radar-tracked vehicle is moving in such a 
manner that a cost functional is minimized, then calculation of the J integral 
is simplified. 
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I f  the f o f  (1) is determined in such a manner  that  the expected value 
[with respect to (1)] o f  

fo{ L(t, k(t), x(t)) + [At, #c(t), x(t))]2/2} dt + (~($c(T), x(T)) 

is minimized, then (13) becomes 

divided by 

E.aW~[ ( T y ( t )  dt + x(0)7 exp[ - �89  (L + ~g~2) dt 
" ttJo 

[fo" • (1/k 2) ~ g,&(t + Q#c) dt 

]l} + ~ S,2(t + Q,(t)/c) dt + O(#c(V), x(T)) 

(is) 

(19) 

E~ a~ exp ( -  I/2A 2) (L + ~ g2) dt + (1/32) ~ g,S, dt 

+ ~&2(t  + Q(t)/c)dt + r 

Proof  o f  (19) is the same as the proofs  o f  Theorems 3.2 and 3.3 of  Ref. 
12. See Kushner  (al> for other  derivations o f  the optimal control  equations. 
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